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Active echo energy received by a two-element array may be comprised of both

spatially coherent and spatially spread scattering processes (such as clutter

or reverberation) and isotropic noise. Such inputs may be filtered by a

correlation receiver from which range, Doppler and angle estimates can be

made. In many cases, these estimates display azimuthal support, such that

angle estimates of spatially spread scattering processes are stochastically

distributed across the array beamwidth, whereas angle estimates of spatially

coherent scattering processes tend to be azimuthally compact.

A scattering function model is used to relate the geometry and scattering

distributions to the angle estimation problem when a two-element array is

used as the receiver. The angle estimate statistics are described by probability

density functions which depend upon array geometry, scattering distribution,

scattering strength and ambient noise. At low levels of interference, spatially

coherent scattering processes display low angle variance. Consequently,

realizations of measured angle from spatially compact processes tend to
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13. Abstract (continued)

be consistent while those from spread scatters tend to be distributed across
the receive beam support. When multiple measurements of angle are available,
the sample variance can be useful as a means to characterize the underlying
scattering distribution.

Probability density function sof angle sample variance as a function of
coherent scattered energy, diffuse scattered energy and ambient noise are
developed through a multistep statistical transformation and verified with
Monte Carlo estimations. Errors intorudced by assumptions regarding correlation
between angle measurement realizations are discussed and examples are provided.
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ABSTRACT

" Active echo energy received by a two-element array may be comprised of

both spatially coherent and spatially spread scattering processes (such as clutter

or reverberation) and isotropic noise. Such inputs may be filtered by a correlation

receiver from which range, Doppler and angle estimates can be made. In many

cases, these estimates display azimuthal support, such that angle estimates of

spatially spread scattering processes are stochastically distributed across the array

beamwidth, whereas angle estimates of spatially coherent scattering processes tend

to be azimuthally compact.

A scattering function model is used to relate the geometry and scattering

distributions to the angle estimation problem when a two-element array is used

as the receiver. The angle estimate statistics are described by probability density

functions which depend upon array geometry, scattering distribution, scattering

strength and ambient noise. At low levels of interference, spatially coherent scatter-

ing processes display low angle variance. Consequently, realizations of measured

angle from spatially compact processes tend to be consistent while those from

spread scatterers tend to be distributed across the receive beam support. *hen

multiple measurements of angle are available, the sample variance can be useful as

a means to characterize the underlying scattering distribution.

Probability density functions of angle sample variance as a function of co-

herent scattered energy, diffuse scattered energy and ambient noise are developed

through a multistep statistical transformation and verified with Monte Carlo es-

timations., Errors introduced by assumptions regarding correlation between angle

measurement realizations are discussed and examples are provided.
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Chapter 1

INTRODUCTION

1.1 Background

Active echo energy received by a two-element array may be comprised of

both spatially coherent, and spatially spread scattering processes (such as clutter

or reverberation) and isotropic noise. Such inputs may be filtered by a correlation

receiver from which range, Doppler and angle estimates can be made. In many

cases, these estimates display azimuthal support, such that angle estimates of

spatially spread scattering processes are stochastically distributed across the array

beamwidth, whereas, angle estimates of spatially coherent scattering processes tend

to be azimuthally compact. Signals can be designed to meet specific requirements

in relation to scattering process characteristics, geometry, medium conditions and

desired ambiguity resolution.7 Early accomplishments in this area were made by

Rihaczek, 2° VanTrees 23 and Woodward, 2' and significant on-going work is being

carried out by Altes and Titlebaum, 1 Costas,5 Golomb and Taylor,' Green9 and

Titlebaum.
21

Spatial support is defined as the range (delay) and azimuthal (angle) distri-

butions of a scattering process. Spatial support can either be coherent (compact),

wherein a scattering process occupies a small region in range and azimuth, or

diffuse, wherein the scattering process is spread in range and across the receiver

beamwidth. Estimates of range and angle from scattering processes exhibit ran-

dom variations dependent upon the amount of spatial support of the scattering

processes and the coherent-to-incoherent component ratio (CIR). These variations
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may be described by probability density functions." ° It should be recognized that

many other factors contribute to the specific form of such density functions, such

as3,26

1. transmitted frequency,

2. physics of scattering process,

3. medium temperature, pressure and flow,

4. number of transmitter/scatterer/receiver paths,

5. noise, and

6. density of spatially spread scattering processes.

Both spatially coherent processes, and spatially incoherent processes possess av-

erage energy levels and thus a CIR, which may be defined as the ratio of the

energy received from the spatially coherent scattering process to the total received

incoherent energy level.26

1.2 Variance Estimation

The azimuthal spread of a scattering process can be described in terms of

an angle pdf, from which the variance may be used as an indicator of azimuthal

scattering support. Specifically, spatially coherent scattering processes tend to

exhibit low angle variance, whereas spatially spread scattering processes tend to

exhibit high angle variance. 10' 19

The goal of this thesis is to provide a means of describing spatial coherence

by developing angle sample variance probability density functions which are para-
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metrically related to scattering process strength and distribution, noise, number

of realizations, and electrical phase difference between receivers of a two-element

array.

1.3 Assumptions and Limitations

In deriving the angle sample variance pdf, the following assumptions (in-

cluding rationale) were made:

1. received processes are composed of narrow-band continuous wave (NBCW)

Gaussian processes embedded in noise, which allows for use of the electrical

phase difference (angle) pdf developed by Middleton 13 and Rainal, 17

2. uncorrelated scattering conditions in the medium, which provides uncorre-

lated returns in range and azimuth, and consequently allows the use of a

scattering function model,19 '27

3. scattering aperture in far field, which allows the received processes to be

considered as plane waves,27

4. N degrees of freedom (statistically independent angle estimates) for angle

sample variance calculation, where N is the number of measurements, which

allows the use of convolutions in finding joint statistics, 16

5. two-element array with finite beamwidth,1 7'1 9

1.4 Organization

In chapter 2, a scattering function model will be introduced which relates

the transmitted and received processes in terms of the temporal and spatial vari-
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ations of the medium. 27 The angle pdf, developed by Middleton"3 and Rainal,17

will be discussed and shown to be dependent upon the spatially coherent scattering

strength and angle, the spatially spread scattering strength and distribution, and

the noise level. 10

The angle pdf is used in chapter 3 to derive the angle sample variance

pdf, which is developed theoretically with a multistep transformation model and

verified with Monte Carlo estimates. The angle sample variance density function

will be shown to exhibit a low mean value when dominated by a spatially coherent

process embedded in low-level spread scattering and noise.

In chapter 4 the Monte Carlo method is further utilized to demonstrate

effects of correlation between the angle sample mean and angle sample variance, i.e.

when there are N - 1 degrees of freedom for the angle sample variance calculation.

The results will illustrate the effects of assumption (4) in section 1.3.

Chapter 5 contains conclusions and recommendations for further work.
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Chapter 2

ANGLE ESTIMATION OF SCATTERING PROCESSES

2.1 Introduction

In this chapter, the theoretical basis for the relationship of angle variance to

azimuthal coherence will be presented. This is achieved by using a linear scattering

model to relate the phase across a two-element array to the azimuthal distribution

of scattered energy described by a scattering function. It will be shown that phase

variance is proportional to the angular spread of the scattered energy and inversely

proportional to the CIR, and generally, a relatively small value of phase variance

may be taken as an indicator of backscatter which is dominated by a spatially

coherent (small angular spread) scattering process.

2.2 Background

Prior to investigating specific relations of azimuthal variance, background

information will be presented. In section 2.2.1, the echolocation relations of

Middleton 13 and the spreading function fundamentals of Laval10 and Ziomek26'27

provide the bases for a linear model of scattering processes. These relations are

extended in section 2.2.2 to include scattering process geometry and correlation be-

tween the transmitted process, and the received coherent and incoherent processes.

The phase difference between array elements is related to the electrical phase dif-

ference (epd) probability density function (pdf) of Middleton 3 and Rainal, 7 in

section 2.2.3. Based upon these fundamentals, the magnitude of the azimuthal (an-

gle) variations can be related to the electrical phase difference pdf, as per Ricker, 19

in section 2.3.
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2.2.1 Linear Backscatter Model

In this section, the scattering process components will be introduced. It will

be shown that a scattering process can be represented by a linear filter described

in terms of time and position, which in turn can be represented by a spreading

function. The spreading function is used to represent a scattering process as a

filter response in terms of time delay and Doppler. A general expression will be

developed which expresses the received process in terms of the transmitted process

strength, spreading function and backscatter geometry.

The backscatter process under consideration will be assumed to be com-

posed of a spatially coherent (angularly compact) scattering process, a spatially

spread scattering process and random uncorrelated noise, in the far field of the

source. In modelling the time and position relations of these three mechanisms,

the received input can be written as

f,(tFr) = fc(t, c) + fh(t, i) + n, (2.1)

where

f, - the received process,

fc - the spatially coherent scattering process (small angular support),

f- - the spatially spread scattering process (clutter or reverberation),

n - complex narrowband isotropic uncorrelated white Gaussian noise (WON),

and
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r,,C, - three-dimensional position vector of each of these processes.

In an echolocation sense, reflections from scattering processes (spatially

coherent or diffuse) can be envisioned pictorially, for a bistatic receiver, as demon-

strated in figure 2.1.14 The symbols -,i, il, and 1ig designate unit vectors in the

direction of the receiver, the scattering process and transmitter, respectively. The

signal path from a scattering process is the collection of ray paths originated from

the transmitter which first reflect from the scattering region and then are inci-

dent upon the receiver. The term "ray paths" is used to denote that signal paths

may experience refraction and several reflections, but are nonetheless the process

reflected from a scattering process. The scattering processes can either be spa-

tially coherent (compact) or spatially spread. The noise n will be assumed to be a

complex narrowband white Gaussian noise process with spectral density N 0 .3.22

Assuming a linear transmission mediur.,,, the scattering process can be

viewed as a time-variant, space-variant impulse response filter. 9 The function

h(r, t, 11,) is the response of the filter at time t to a unit impulse applied - seconds

ago at the origin and reflected from a scattering site fPS with direction i7l, and

range [Fr1. The filter response will be assumed to be uncorrelated in delay 7 and

direction u-,, and to be wide sense stationary in time. If the process transmitted

from the origin at time t - r is ft(t - r) and the process received at the origin at

time t is fr(t), then the incremental filter response can be written as

f,(t, 1s, 7-) = fi( - r)h( r, t, 1 )ddf,, (2.2)

where flu is an incremental area representing the support of the direction vector U-,.

Using a trajectory diagram, 18 ,21 to account for delays caused by the transmitter
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and receiver locations with respect to the scattering process direction, results in

f+(t,iV+,r) = ft+ . (, +) -r)h(r,t + r, 'u , ,)drdfl,. (2.3)

Including transmit beam steering (where uo denotes the transmit energy direction),

the transmitted energy Eo, transmit/receive array weighting (wt(Ft) and w,(F,)

respectively), and integrating over the transmit aperture and scattering support,

results in

f, (t, Fr) = VE0 w,.(rj A jf(t + f7 il ______

h (r t+ r- ui.) d7- dfl dlt

(2.4)

Equation 2.4 represents stochastic realizations at a point receiver located at Fr,

resulting from a linear space-time stochastic operation in the direction 47,, upon

the transmitted waveform ft(t) which originated at the location Ft. 19 The symbol

ft designates the support of the transmit aperture.

Given an impulse response in time and position, it is useful to describe the

amount of spreading of a scattering process in terms of Doppler, time and position.

One such representation is the spreading function which will in this case be defined

as the Fourier transform of the impulse response with respect to time only, i.e. 26

h(r,t,u,) = F'{S(r, wd,4,)}. (2.5)
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Consequently, equation 2.4 can be expressed in terms of the spreading function as

L( "('+
frrt,7,r) =n V'nr(r) J r j jft(t + - c____

S~r, wd, US8)ex+P- Wd (t + c dWdj dr d~ult .

(2.6)

The following assumptions will be made with regards to the angle statistics of

spatially discrete versus spread scattering,

1. uncorrelated scattering in r, u3,

2. transmission beamwidth is greater than the scattering support in angle,

3. no Doppler spreading, such that the spreading function can be expressed

as Ss(r,wd, is) = S(r, il7),(wd - wo), where wo is the transmit angular

frequency,

4. unity transmit/receive weighting, and

5. monostatic transmitter/receiver at origin.

At the expense of additional complexity, these assumptions can be removed. Given

these assumptions, equation 2.6 can be expressed in terms of the spreading function

as
S,(t,( +F V  u - )Ss(r, -)drdlu, (2.7)

which represents an echo return observed at time t and position Fr in terms of

the transmitted process and energy spreading in the medium. Using this expres-

sion, the processes received from spatially coherent and spread scatterers can be
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modelled separately as

f$$I ft (f + c 7 (2.8)

where SC(r, il) and SI(r, il) are the zero Doppler spreading functions for the

coherent and incoherent processes, respectively, and the integration is over the

scattering regions, fss and fZ$! for the spatially coherent and spread scattering

processes, respectively. 19

2.2.2 Correlation Processing with Two-Element Array

It will be assumed that one or more continuous wave processes are trans-

mitted and the resulting backscatter is incident upon a two-element array at the

origin as shown in figure 2.2.19 The scattering region is confined to finite spatial

support $s in azimuth 0s and range R. The two receiver inputs are filtered, and

the phase difference between the channels is measured. This type of receiver is

referred to as a phase comparison receiver and is shown in figure 2.3.17

Using equations 2.8 and 2.9, and assuming a narrowband continuous wave

(NBCW) transmitted process ft(t) = exp(jwot) and array geometry of figure 2.2,

the spatially coherent and incoherent processes at each receiver input can be ex-

pressed as
19

(. ( dO <
fclC (t) gEo expo t s ue f SC ( O)dTdO (2.10)

=1,2t F ~ Jexp{~~ a -7 ')S (r,)dr dO, (2.11)

where the small angle approximation is used for sin 0. The return energy time
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series for each array element is filtered using a replica of the transmitted process

which includes a hypothesized delay and angle 0. The symbol " ^ " designates

hypothesis. For a narrowband process with pulse duration T, the filter is6

1 O )dO
L = _ j_¢ f(t ± _ _ r)f*(t ±- dc - f')dt, (2.12)

TJ-_c 2c 2c (.2

Denoting the filtered coherent and incoherent processes as Ls1, Ls 2 , LI1 and L12 ,

the outputs at phase centers 1 and 2 are;19

J e {rd(O-O) wo(r)}Sc(r, )drdO,
LslS 2 (0, fl = VfZJ Jexpi{± j AO - o w(A)} S (T,0) dT dO, (2.13)

where

AT = T - T', (2.15)

AO- 2. (2.16)

WO

2.2.3 Electrical Phase Difference pdf

Using equation 2.1, the net complex filter output of the two elements are1 8

Li = LSi + L11 + ni, (2.17)

L2 = LS2 + L 12 + n2. (2.18)

The functions Ll and L 2 are complex Gaussian random variables, from which the

electrical phase difference may be computed as

= arg[LIL2]. (2.19)
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The probability density function (pdf) for 4), i.e. between two complex

Gaussian NBCW processes, is given by Middleton 13 and Raina 17 as

=o 10 - 92-2[arcsin(#) +! +V/-2 (2.20)
2w 2

where

-8 = kocos(O - Oo), (2.21)

4= tan 1 [1] (2.22)
1 P13

~2 2 ~
k= 1 + P- (2.23)

The term pij is computed from a 4 X 4 covariance matrix, 17 wherein

pij E{Ii, Ii}, (2.24)

where 19

I I Re[LI], (2.25)

12 Im[L1], (2.26)

13 Re[L 2], (2.27)

14 Im[Ld]. (2.28)

The most probable electrical phase difference between the two inputs is denoted

as )00, where -ir < 4'0 : +7r, and the symbol ko is proportional to the relative

strength of the coherent component, where 0 < ko < 1. It is assumed that the

transducers are ideally phase matched such that 0 represents the actual electrical

phase difference between the two inputs. The epd pdf is shown in figure 2.4 for

values of ko from 0.0 (uniform scattering) to 0.9 (dominant azimuthally coherent
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scattering). The scattering process angle can be computed from the electrical

phase difference by the relation 17

0 = sin- 1 ( d.(2.29)

Based upon equation 2.29, the terms electrical phase difference and angle will be

used interchangeably.

The electrical phase difference mean and variance are given by Merchant 12

as

E{@} - arccos(ko cos 0o) k0 sin O0, (2.30)
r- 2 C052 00Vr 1 - kocos 2 (

2 = 7 2  k02 (1 - ko2 ) (2.31)a' 12 2 - xcsk o2 (1 - k02 cos 2 00)"

Plots of the epd mean and variance as a function of c0 and Oo are given in figures

2.5 and 2.6, respectively.

Without loss of generality, this thesis will be concerned solely with the

sample variance when 40 = 0. When the azimuthally coherent scattering process

is not at 0 = 0, the epd pdf is altered such that 0 and ko in equations 2.22 and

2.23, respectively, take on different values dependent upon the correlation between

receivers. Correlation effects upon Oo and c0 are discussed by Merchant, p. 29.12

Since (1) the epd pdf is symmetric about 0 and (2) only the variance about 0

is to be considered, 40 shall be fixed at 0 and only the parameter ko shall be

considered.

2.3 Relation of Angle Spread to Azimuthal Scattering Coherency

In section 2.2.3 (figure 2.4), it was shown that Ic0 , which is proportional

to CIR, plays a dominant role in defining the epd pdf. In this section, ko will
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be related to the coherent and incoherent process scattering functions to illus-

trate the variance of angle estimates from a two-element array when a spatially

coherent scattering process is embedded in spatially diffuse backscatter. It will be

shown that under low noise, a spatially coherent scattering process exhibits low

epd variance.

Assuming uncorrelated scattering, the scattering function Rs(r, Wd, t7-) is

the mean-square value of the spreading function, i.e. 26

Rs(r,wd, i) = E{IS(r, Wd, t, )2, (2.32)

which in effect is the average amount of spread that the scattered energy will

undergo as a function of time delay r, frequency wd, and direction i7l*15 Assuming

zero Doppler spread, the component scattering functions can be expressed as27

Rsc(r,9) = E{ISc( ,l)12}, (2.33)

RsJ(r,0) = E{IS,(r,O)1 2}. (2.34)

Equations 2.22 and 2.23 can be expressed in terms of the scattering function as
19

0= tan-, ( Q-c,), (2.35)

ko= S2(Q + . (2.36)(1 +SOT,)2 '

where

Q8= JJ(crO)+R(rO)}sin [(27-d)(0 - )drdO, (2.37)
/ J {(Rsc(ro) + Rs(r)(O-O)].o

QC Cs d) (O - d-TdrdO. (2.38)
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The symbol So is the transmit signal-to-noise ratio (SNR = and the symbol T8

represents the total combined scattering strengths of the coherent and incoherent

processes and is given by

T8  J[Rsc(rO) + Rsi(r,O)]dr dO, (2.39)

where the regions of integration are confined by the pulse duration T utilized in

filtering the data for -r and the small angle approximation of equations 2.10 and

2.11 for 0. It should be recognized that equations 2.35 and 2.36 are the fundamental

relations between the scattering processes and the epd pdf.

2.3.1 Example

For the purpose of illustration, the following example may be used to high-

light the effects of CIR and scattering spread upon the epd pdf, and specifically,

the epd variance. Assuming uncorrelated scattering, a simple model of the co-

herent and incoherent process scattering functions may be constructed. Given a

point scattering process with constant delay ro and angle 00, the coherent process

scattering function can be expressed as 19

Rsc(r,O) = RCO6(r - ro)6(O - 0o), (2.40)

where Rco is the coherent process scattering strength. A simple model for the

incoherent process scattering function, results from the following assumptions, 17

1. uniform scattering over the integration time T and

2. uniform angle spread over the receive beamwidth 0 b,
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and can be written asI 9

Rsj(r, 0) = Rio, where E (2.41)
0±L

where R10 is the incoherent process scattering strength per unit delay and angle.

The incoherent process is assumed to be uniformly distributed within this region.

Using Eo as the transmitted process energy, the received coherent and incoherent

process energies realized at the output of the filter are19

Es = EoRco, (2.42)

El = EoRIoTOb, (2.43)

and the noise energy realized at the filter output is No. Using the equations 2.37

through 2.39 with b = 0 and the scattering functions defined in equations 2.40

and 2.41, and assuming a rectangular beam pattern, the most probable epd can

be shown to be 19

= tan-1 Essin(ko) j (2.44)

Escos(oo) + Elsinc(kb)l

where

0 2,rOod (2.45)
Ao

Ob dL , (2.46)

with d as the two-element array width and Ao as the wave length. The CIR

parameter squared k2 is given by19

k2 = Ej + 2EsEI cos(oo)sinc(kb) + Elsinc2(0b) (2.47)
(No + Es + E1 )2
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The sinc functions in equations 2.44 and 2.47 come about because of the idealized

rectangular beam pattern.

From the expression 2.44, it can be seen that the most probable electrical

phase is biased by the incoherent process but not the uncorrelated noise. At high

CIR, 0 approaches the phase difference consistent with the point scatterer angle.

At low CIR, the bias depends upon the spatial spread of the incoherent process,

being small for Ob > " .

The effect of an increase in noise No or spread scattering support Ob is to

increase the variance of the phase by reducing k2 as can be seen in equation 2.47

and figure 2.3.

Using the model for azimuthally coherent scattering embedded in a diffuse

scattering process, the sample variance can be computed from realizations having

a pdf given by equation 2.20.
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Chapter 3

ANGLE SAMPLE VARIANCE DENSITY FUNCTION

3.1 Introduction

In chapter 2, the electrical phase difference (epd) pdf 3"' 7 of a two-element

array (section 2.2.3), and the inverse relation between epd variance and ko (sec-

tion 2.3),1° 19 were illustrated. Angle compactness can now be shown to be mea-

surable by developing the pdf of the angle sample variance. Given the angle

sample mean of N samples 7, and N statistically independent angle samples 0j,

the following relation was used to find the angle sample variance 15

s2 T)2. (3.1)

Simulation results (figure 3.14) indicate that this estimator is not biased. 4

The theoretical angle sample variance pdf's will be derived through the

use of statistical convolutions and transformations (section 3.2) and verified with

Monte Carlo techniques (section 3.3). As discussed in section 2.2.3, only the

case of 0 = 0 with various values of ko will be considered. Effects of statistical

correlation between the sample mean and variance will be shown in chapter 4.

3.2 Theoretical Development of Sample Variance

Through convolutions and transformations, a theoretical representation of

the angle sample variance pdf, fS2 (S2), can be formed.

I ~~ 0
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3.2.1 Methodology

The angle (epd) sample variance is obtained in seven steps for N samples

(N > 2) by using the continuous pdf of 0 (-7r < r '). These steps will be

shown for k0 = 0, O0 = 0 and N = 2 through 6. In section 3.2.2, only the angle

sample variance will be shown for k0 = 0.5 and 0.9.

1. Transformation - Division15 I 4

u= ,where - <u< (3.2)

N N N

2. Convolution- Summation 16

N

N (3.3)
= u, where - 7r < 7r

3. Convolution - Subtraction, 16 Oi and are statistically independent

v - -,where - 27r < v < 2r, (3.4)

4. Transformation - Scaling

27r - v, if v < -r
w= v, if-r < v < ir, where -r < w < 7r (3.5)

-27r +v, if v >+r

5. Transformation - Squarfng1 s

(3.6)
w2,where 0 < y _ 7r2
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6. Convolution - Summation 16

N

i=1 (3.7)

= Zy,where 0 < z < N r

7 Transformation - Division15 ,24

NZN ---'.':3.)
)2

_ Z where0<S2 <
N-1 e0 - N-1

The variables u, #, v, w, y, z and S2 indicate each step. Note that steps (2.) and

(7.) are the sample mean and sample variance of N statistically independent

random variables, respectively, and thus given their traditional symbols 6 and

S2. Given the angle pdf fo( ), the pdf of each variable will be found in turn, i.e.

f.(U) -f- ) - f,,(v) - fW(w) -_ fy(y) _ fz(z), fs2(S2). Each of these

steps is detailed, respectively, in the following subsections.

3.2.1.1 First Transformation, f,,(u)

The transformation indicated by equation 3.2 is the initial step in finding

the sample mean pdf f-( ), where the sample mean is given by eqluation 3.3.

Given the angle pdf f'(O), a division transformation is carried out as 15.24

f(u) = m fo(NO). (3.9)

Fundamentally, this relation states that the magnitude of fo(O) will be increased

N-fold and the width decreased N-fold. The pdf's for the division transformation
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of a uniformly distributed statistically independent random variable (angle sam-

ples at k0 = 0) are shown in figure 3.1. Effectively, the division by N cancels the

multiplication by N, and an area of unity is maintained.

3.2.1.2 First Convolution, f4(0)

In this step we wish to find the pdf of the sample mean. The mean of N

statistically independent random variables is given in equation 3.3. Since the pdf

of the sum of N statistically independent random variables is the convolution of

the individual pdf's, 16 the pdf of the angle sample mean is

f(O)= ful (Utl) * fU 2 (U2) * fu 3 (U3)* .*fuN(UN). (3.10)

It is assumed that all N samples obey the same pdf, i.e. fui(ui) = f, (u), and

the sample mean pdf becomes

f-(4) = f,(u) * fA(u) * fA(u) * ... , f(u), (3.11)

which is the N-fold convolution of identical pdf's. Since convolutions in the time

domain equate to multiplications in the frequency domain, i.e.

fUl(U1)*f 2 (2)*... *fuN(uN)= F-{F(ul).F2 (u2 ) ... FN(UN)}, (3.12)

where
Fwj(uj) = F{fUi(ui)} (3.13)

the angle sample mean pdf f (¢) can be expressed as

f; (-) = F-'{Fu(u) ) Fu(u) u(u, (3.14)
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wherein the number of convolutions is equal to the number of samples.

To preserve the density function area of unity, a discrete-time Fourier

transform (DTFT) is utilized, wherein time and frequency samples are normalized

by the evenly spaced sampling interval At,6' ,1 i.e.

t maz - train

At= N-i (3.15)

The DTFT pairs are as follows11

N-1 -j27rkn
X(k) = At 1 x(n)exp( N ), (3.16)

n=O

" '9 "'" j27rkn,

0(n)= = tZ :) exp( -p).A (3.17)

The sample mean pdf's for 1 through 6 samples are shown in figure 3.2.

3.2.1.3 Second Convolution, fv(v)

Given the mean pdf f (¢), we can now find the pdf of the difference

between a single random sample Oi and the mean of N samples, indicated as v in

equation 3.4. The pdf of the difference between two samples is identical to the

pdf of the summation of two samples if the samples are statistically independent

and their pdf's are symmetric. These are valid assumptions in this case since (1)

the epd and epd sample mean pdf's are symmetric about 4o, and (2) the sample

mea:2 is assumed statistically independent from the samples about the mean. If
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V - 4 + , then the pdf of v can be written as a convolution, i.e.

M4V) = J 0 f;{4))fo(v - (3.18(3.18)

= f(*) MO.

Deriving a similar expression for v = 4 -4), as per the method shown by Peebles,

pp. 102-3,16 results in

A',(v) 0 f(0)f; (O - v)dO. (3.19)

Since we are only interested in the "difference" between two pdf's, the pdf for

V - 4 - 4 can be similarly expressed as

AM(v = JL. )~( - Odo4. (3.20)

This expression is identical to equation 3.18, except that f;7(0- v) is folded about

v = 0. Thus if fi() = f$(-4), i.e. symmetric, equation 3.20 can be expressed

as

+0v = Jfd (3.21)

= L f()f (v - -)d

which is identical to equation 3.18, and thus the difference between two symmetric

pdf's can be written as a first order convolution, i.e.

A4() = f#-_(o - 7)
- (322)

= 4(0), f*(4).

The resultant pdf's for the example conditions are shown in figure 3.3. Similar

to the pdf of the summation of N samples in section 3.2.1.1, the widths of
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and fo(,) are effectively added (doubled) and the mean heights are halved, and

thus the area of unity is maintained.

3.2.1.4 Second Transformation, f,(w)

There is one peculiarity for the pdf of the difference between and

fo(O), which is that we are finding the pdf between two continuous density func-

tions. In other words the pdf's for Oi and 4 extend continuously from -r to

+7r, such that -7r = +r. Therefore, a difference about the mean less than -7r

or greater than +7r must be transformed to the interval (-7r, +r.). This can be

rephrased as, if Oi - 4 < -7r, then the result is translated to (+7,) minus (the

amount less than -7r). Similarly, if Oi - > +7r, then the result is translated

to (-7r) plus (the amount greater than +7r). The transformation is described in

equation 3.5.

An example is given to highlight this concept. If the mean of N samples

is found to be -r and an angle sample of 1 is taken, then €i - 4 = - (-r,) =

+1, which translates to -". In other words, the difference about the mean is

effectively ' since +7r and -7r are the same point of the continuous angle density

function.

Such transformations of fv(v) to fw(w) for the pdf's of figure 3.3 are shown

in figure 3.4. Since the areas less than -7r and greater than +r, are added to the

existing area between -7r and +7r, the area of unity is preserved.

Figure 3.4 indicates some amount of error. Since the difference has been

found between a uniform distribution and the mean of a continuous uniform

distribution, all of the pdf's of figure 3.4 should be uniform. Given a range
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from -7r to +,r, this would indicate a uniform magnitude of 0.1592. The

curves shown increase in height with each additional sample, ranging in uniform

magnitudes from ; 0.1598 to 0.1612. These errors are primarily due to FFT

degree, DTFT normalization and single precision computations.

The "glitch" appears at -7r because there was one extra point between

-27r and -7r than between 0 and +ir. This point is disregarded in the next step.

3.2.1.5 Third Transformation. fy(y)

The pdf for the square of the difference about the mean, as per equation

3.6, is a squaring transformation of fw(w). The squaring transformation is given

by 15

fy(y) = fw(- V/') + fw(+V /'Y) (3.23)

If the originating density function is symmetric about the mean, as is the case

with f,(w), i.e. fw(-w) = fw(+w), the squaring operation can be rewritten as

MY) = f,.,(+VF) (3.24)

Squaring transformations of fw(w) of figure 3.4 are shown in figure 3.5. The pdf

area of unity is preserved.

3.2.1.5.1 Discretization of f,,,(w)

Prior to the summation (convolution) of the next section, the samples of

fy(y) must be evenly spaced. In section 3.2.1.2, it was emphasized that before

performing a convolution, the time domain samples must be evenly spaced. With
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the squaring operation of the last section, such even spacing has been lost. Thus,

before doing the summation operation in section 3.2.1.6, it is imperative that the

squared samples be evenly spaced. This can be effectively done through regression

techniques. 2 As shown in figure 3.5 the pdf's of (€, _ -)2 exhibit extremely steep

slopes close to the ordinate axis, i.e. approach -oo, which is unfavorable to

regression techniques and consequently the variance model. This effect becomes

more extreme as the ko increases. Therefore, in modelling the variance density

function, regression was performed upon the step prior to the squaring operation

f,(w), wherein the slopes were not extreme. The discretization operation was

carried out as follows:

1. evenly spaced points were found between 0 and 7r2 (the limits of y),

2. square roots of these values were taken and assigned as abscissa values of

w, and

3. regression was performed prior to the squaring operation to find the cor-

responding ordinate axis values of each new abscissa value (a third order

polynomial with five points per regression packet was found to give the

least deviation).
2

Thus, given evenly spaced abscissa values, convolutions of fy (y) can be performed.

3.2.1.6 Third Convolution, fh(z)

It was shown in section 3.2.1.2 that the pdf of the sum of N statistically

independent samples is equal to the convolution of their individual pdf's. 1 6 Figure

3.6 illustrates the convolution of N fs(y)'s given by equation 3.24. The erratic

curves around an ordinate axis magnitude of 10- 6 exhibit the error caused by
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the regression approximations of the last section. Due to their extremely low

magnitude, they do not contribute any significant error.

3.2.1.7 Fourth Transformation, fs2(S )

It was shown in section 3.2.1.1,15,24 that the division transformation in-

creases the magnitude and decreases the width N-fold. This is shown in figure

3.7 for the pdf's of figure 3.6. Note that the number of samples starts at 2,

corresponding to the minimum number of samples allowable N - 1. Unlike the

convolution operation to find the sample mean in section 3.2.1.2, the abscissa

boundaries of the sample variance pdf's are not identical. As the number of

samples increases, the widths decrease and converge to 72. This results from un-

biased estimates of the actual variance as per the sample variance normalization

discussion in section 3.1.

3.2.2 Theoretical Model Results

In section 3.2.1, the convolution/transformation technique was reviewed

in detail for ko = 0 and Oo = 0. Sample variance pdf's for different values of k0

will now be illustrated using the same method. Intermittent steps will not be

shown. Sample variance pdf plots with O0 = 0 and 2 through 10 samples, for

ko = 0.5 and ko = 0.9, are shown in figures 3.8 and 3.9, respectively.

3.3 Monte Carlo Method

In order to verify the results of section 3.2, Monte Carlo estimates of the

angle sample variance pdf are computed. In this section the Monte Carlo method

will be described. Monte Carlo results will be shown through comparisons with

the theoretical model in section 3.4.
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3.3.1 Methodology

By generating a large numbers of random samples which are realizations

of the electrical phase difference (angle) pdf of Rainal17 and substituting these

values into equation 3.1, epd samples with correct variance can be synthesized. In

order to match the statistically independent assumption of the theoretical pdf's

in section 3.2, the mean will be found from a separate set of samples. Effects of

correlation between the sample mean and variance will be explored in chapter 4.

3.3.1.1 Random Number Generation

Two methods were explored to generate statistically independent samples

which obey the epd pdf. These were inversion 4 and eigenvalue deconvolution. 19

The inversion method was difficult to work with given the epd pdf be-

cause the distribution function equation could not be inverted in closed form.

Interpolation between known points did not give satisfactory results.

Statistically independent samples which obey the epd pdf were gener-

ated using eigenvalue deconvolution. The basis for the deconvolution is Rainal's

derivation of the epd pdf. In doing so, Rainal develops a 4 X 4 covariance matrix

Al between two vectors N and Nb (N. = N1 + iN 2 and Nb = N 3 + jN 4 ), based

upon the most probable electrical phase difference Oo and the SIR term ko. 17

The random phase difference is described by the phase angle between these two

vectors, i.e.

_t Im(N.N) (3.25)

The four coordinates (eigenvectors) of the two vectors A and Nb are zero-mean

Gaussian processes with variances equal to each of the four eigenvalues. By



44

iteratively generating N sets of random realizations of these processes, N random

numbers can be generated. 19 A pdf of random variables about the actual pdf for

k0 = 0.6 is shown in figure 3.10. The dashed line is a normalized histogram of

the random numbers.

3.4 Theoretical/Monte Carlo Results Comparison

Comparative plots of the theoretical versus Monte Carlo results for 4 and

10 samples for k0 = 0.0,0.5 and 0.9 are shown in figures 3.11, 3.12 and 3.13,

respectively. What appears to be a higher degree of error when for k0 = 0.9 in

figure 3.13 is caused by the histogram resolution of the Monte Carlo estimates.

The samples were put into 250 evenly spaced slices, such that the narrower the

width of the theoretical pdf, the lower the comparative resolution of the Monte

Carlo pdf.

3.5 Analysis

As can be expected, the mean of the sample variance decreases as k0

increases, thus signifying existence of a compact scatterer. Theoretical angle

sample variance pdf expected values versus actual angle variance, from figure

2.6, are shown in figure 3.14. As the number of samples increases, the expected

value of the sample variance converges towards the actual variance shown in figure

2.6. Angle sample variance plots for ko - 0.0 through 0.9 for 4,6 and 8 samples

are shown in figures 3.15 through 3.17, respectively.

Due to the significant shift of the sample variance peak (figures 3.15

through 3.17) and mean towards the ordinate axis (figure 3.14), these pdf's can

be effectively used as a means to characterize angular spread.
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As the number of samples N increases, the "sample variance" pdf ap-

proaches the variance pdf given by equation 2.31 and shown in figure 3.14.

The Monte Carlo method does not have any bias since the sample variance

was carried out directly on an unbiased sample set. However, the transforma-

tion/convolution method does exhibit some bias. Errors were evaluated by taking

the area of the pdf's in each step. The dominant error comes from the squaring

operation of section 3.2.1.5 and the discretization operation of section 3.2.1.5.1.

In the squaring operation, the first abscissa value, w, must approach 0 but

can not be equal to 0. This is due to the transformation operation of equation

3.24, wherein the square root of the abscissa value is the divisor, thus making the

ordinate value fy(y) = oo at w = 0, or equivalently the probability that w = 0 is

zero, f,(0) = 0. The first abscissa value must be adjusted dependent upon the

SIR, which is proportional to the slope, and the number of data points. The first

abscissa value was set at w = 0.003, which gave sample variance areas of 1 ± 10- 3

for ko = 0.5 with N = 1 through 10. Optimally, the first abscissa value should

be adjusted for each value of ko.

The discretization method uses regression techniques to interpolate points.

Thus the quality of the interpolation is a function of the estimated regression

coefficients. In this case, the slope and curvature of the known set of data played

the dominant role in the quality of the fit (low quality with high slope and

curvature). The number of points per regression and order of the regression were

tuned by process of elimination such that there was minimal variation about the

actual values.

As a result of these calibrations, the worst case sample variance area
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(w-Lch should optimally be 1.) was at 10 samples with k0 = 0.9, and was equal

to 0.9857 (1.43% error).
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Chapter 4

CORRELATION EFFECTS

4.1 Introduction

Given a finite data set, it is necessary to find the sample variance from

the same set of data from which the sample mean is found, thus reducing the

degrees of freedom by "1."

In finding the sample variance pdf in chapter 3, the sample mean was

found from N statistically independent samples, as per equation 3.3. As a result

of this operation, the following step, wherein the difference about the sample

mean is found in equation 3.4, violates a common sampling scenario in that the

sample mean and variance must be statistically independent. The convolution

integral is only valid if the pdf's are statistically independent. "I other words, if

the mean is computed with the same set of data as that which is found about the

mean, the assumption that Oi and 4 are independent does not hold. This effect

is multiplied in equation 3.7, where the difference squared is convolved N - 1

times. In order to produce useful statistics of sample variance in this situation,

correlation between the sample mean and variance must be either compensated

for or modeled.

There is no attempt in this thesis to model these effects theoretically due

to their computational complexity. However, such effects can be modeled with

ease using the Monte Carlo method of section 3.3. The effects will be compara-

tively illustrated between the uncorrelated theoretical pdr's and correlated Monte

Carlo empirical distribution functions (edf's) in section 4.2. Recommendations
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for reducing correlation effects will be given in section 4.3.

4.2 Monte Carlo Correlation Model

Comparative plots of the uncorrelated theoretical model of section 3.2 and

the Monte Carlo correlation models for 4, 6 and 10 samples, with k0 = 0.0, 0.5

and 0.9 are shown in figures 4.1, 4.2 and 4.3, respectively. These values provide

a good model because (1) the assigned values for k0 represent extremes and (2)

the assigned numbers of samples will provide a reasonable range and yet not

experience too much overlap with multiple plots on the same graph.

At low sample size, the uncorrelated model exhibits a lower variance,

however, as the number of samples increases, the two curves converge. This

behavior is to be expected since the correlated samples are closer to the mean

value and thus exhibit a lower variance.

4.3 Correlation Compensation Recommendations

There are potential compensations which can be made for correlation ef-

fects. Such compensations can either make the sample mean and sample variance

about the sample mean uncorrelated or approach being uncorrelated.

Often, there may be several sets of wide sense stationary data which arrive

chronologically. In such cases, the sample mean can be found from the first

set of data and the sample variance about the mean can be found using the

samples of the second set of data about the sample mean of the first set of

data. Repeating this procedure with each additional set of data would provide

statistical independence between the sample mean and sample variance about

the sample mean.
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Given one sample set, one can find the sample mean with part of the sam-

ple set, and then find the difference about the sample mean with the remainder

of the sample set. Obviously though, this reduces the effective sample set.

When there are correlation effects, the Monte Carlo correlation model

provides useful results for small data sets (: N < 8) because of dominant errors in

the statistically independent theoretical model. However, estimation techniques

should be evaluated for each specific case, and if usable, the theoretical model

(transformation/convolution) would be the most simplistic approach in attaining

the best results due to its smooth curvature. For example, if there is a large

number of samples, the theoretical model would provide a close approximation.



61

Chapter 5

SUMMARY AND CONCLUSIONS

5.1 Summary

It has been shown that the angle sample variance of a two-element array

can effectively be utilized as a means of characterizing the azimuthal support of

spatially spread scattering processes.

In chapter 2, the scattering mechanisms of spatially coherent and diffuse

processes incident upon a two-element array have been modeled. In section 2.3, an

expression describing the epd pdf in terms of the component scattering functions

was developed. An idealized example illustrated that the most probable electrical

phase difference is biased by the diffuse scattering process distribution and not the

white Gaussian noise.19 Through an examination of the electrical phase difference

pdf of Middleton 13 and Rainal, 17 it has been shown that the angle sample variance

is inversely proportional to k0 . Under low levels of diffuse scattering and noise,

spatially coherent processes will exhibit a low angle sample variance.

The significant contribution of this thesis is the presentation of a multi-

step transformation process to find the sample variance pdf given the pdf of a

single realization, which is the angle pdf for the case illustrated. The angle sample

variance pdf's were shown to be inversely proportional to k0 in chapter 3.

A primary assumption in the development of the angle sample variance

pdf's was that the sample mean and sample variance are uncorrelated, i.e. N

degrees of freedom. Correlation effects upon the angle sample variance pdf were
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shown through Monte Carlo techniques in chapter 4. At low numbers of samples

there was decreased variance, and as the number of samples increased (: 8) there

was divergence towards the uncorrelated model.

5.2 Recommendations

Recommendations for future work include the following:

1. Development of closed form solutions for the correlated theoretical model

and the uncorrelated Monte Carlo model, which would require development

of a correlation matrix. It is noteworthy that the sample variance pdf's

resemble both chi-square and Rician density functions and could potentially

be described in terms of such.

2. Extension to Doppler spread processes.

3. Introduce temporal and spatial correlation.

4. Extension to wideband processes.
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